66 research outputs found

    Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence

    Get PDF
    Bis-(3 ',5 ') cyclic di-guanylate (cyclic di-GMP) is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc). This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (K-d similar to 2 mu M). Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence

    Noncutaneous malignant melanoma: a prognostic model from a retrospective multicenter study

    Get PDF
    Abstract Background We performed multicenter study to define clinical characteristics of noncutaneous melanomas and to establish prognostic factors patients who received curative resection. Methods Of the 141 patients who were diagnosed of non-cutaneous melanoma at 4 institutions in Korea between June 1992 and May 2005, 129 (91.5%) satisfied the selection criteria. Results Of the 129 noncutaneous melanoma patients, 14 patients had ocular melanoma and 115 patients had mucosal melanoma. For mucosal melanoma, anorectum was the most common anatomic site (n = 39, 30.2%) which was followed by nasal cavity (n = 30, 23.3%), genitourinary (n = 21, 16.3%), oral cavity (n = 14, 10.9%), upper gastrointestinal tract (n = 6, 4.7%) and maxillary sinus (n = 5, 3.9%) in the order of frequency. With the median 64.5 (range 4.3-213.0) months follow-up, the median overall survival were 24.4 months (95% CI 13.2-35.5) for all patients, and 34.6 (95% CI 24.5-44.7) months for curatively resected mucosal melanoma patients. Adverse prognostic factors of survival for 87 curatively resected mucosal melanoma patients were complete resection (R1 resection margin), and age > 50 years. For 14 ocular melanoma, Survival outcome was much better than mucosal melanoma with 73.3% of 2 year OS and 51.2 months of median OS (P = .04). Conclusion Prognosis differed according to primary sites of noncutaneous melanoma. Based on our study, noncutaneous melanoma patients should be treated differently to improve survival outcome.Peer Reviewe

    A Novel Tetrameric PilZ Domain Structure from Xanthomonads

    Get PDF
    PilZ domain is one of the key receptors for the newly discovered secondary messenger molecule cyclic di-GMP (c-di-GMP). To date, several monomeric PilZ domain proteins have been identified. Some exhibit strong c-di-GMP binding activity, while others have barely detectable c-di-GMP binding activity and require an accessory protein such as FimX to indirectly respond to the c-di-GMP signal. We now report a novel tetrameric PilZ domain structure of XCC6012 from the plant pathogen Xanthomonas campestris pv. campestris (Xcc). It is one of the four PilZ domain proteins essential for Xcc pathogenicity. Although the monomer adopts a structure similar to those of the PilZ domains with very weak c-di-GMP binding activity, it is nevertheless interrupted in the middle by two extra long helices. Four XCC6012 proteins are thus self-assembled into a tetramer via the extra heptad repeat α3 helices to form a parallel four-stranded coiled-coil, which is further enclosed by two sets of inclined α2 and α4 helices. We further generated a series of XCC6012 variants and measured the unfolding temperatures and oligomeric states in order to investigate the nature of this novel tetramer. Discovery of this new PilZ domain architecture increases the complexity of c-di-GMP-mediated regulation

    Structure-Function Analysis of the HrpB2-HrcU Interaction in the Xanthomonas citri Type III Secretion System

    Get PDF
    Bacterial type III secretion systems deliver protein virulence factors to host cells. Here we characterize the interaction between HrpB2, a small protein secreted by the Xanthomonas citri subsp. citri type III secretion system, and the cytosolic domain of the inner membrane protein HrcU, a paralog of the flagellar protein FlhB. We show that a recombinant fragment corresponding to the C-terminal cytosolic domain of HrcU produced in E. coli suffers cleavage within a conserved Asn264-Pro265-Thr266-His267 (NPTH) sequence. A recombinant HrcU cytosolic domain with N264A, P265A, T266A mutations at the cleavage site (HrcUAAAH) was not cleaved and interacted with HrpB2. Furthermore, a polypeptide corresponding to the sequence following the NPTH cleavage site also interacted with HrpB2 indicating that the site for interaction is located after the NPTH site. Non-polar deletion mutants of the hrcU and hrpB2 genes resulted in a total loss of pathogenicity in susceptible citrus plants and disease symptoms could be recovered by expression of HrpB2 and HrcU from extrachromossomal plasmids. Complementation of the ΔhrcU mutant with HrcUAAAH produced canker lesions similar to those observed when complemented with wild-type HrcU. HrpB2 secretion however, was significantly reduced in the ΔhrcU mutant complemented with HrcUAAAH, suggesting that an intact and cleavable NPTH site in HrcU is necessary for total functionally of T3SS in X. citri subsp. citri. Complementation of the ΔhrpB2 X. citri subsp. citri strain with a series of hrpB2 gene mutants revealed that the highly conserved HrpB2 C-terminus is essential for T3SS-dependent development of citrus canker symptoms in planta

    Sugarcane (Saccharum X officinarum): A Reference Study for the Regulation of Genetically Modified Cultivars in Brazil

    Get PDF
    Global interest in sugarcane has increased significantly in recent years due to its economic impact on sustainable energy production. Sugarcane breeding and better agronomic practices have contributed to a huge increase in sugarcane yield in the last 30 years. Additional increases in sugarcane yield are expected to result from the use of biotechnology tools in the near future. Genetically modified (GM) sugarcane that incorporates genes to increase resistance to biotic and abiotic stresses could play a major role in achieving this goal. However, to bring GM sugarcane to the market, it is necessary to follow a regulatory process that will evaluate the environmental and health impacts of this crop. The regulatory review process is usually accomplished through a comparison of the biology and composition of the GM cultivar and a non-GM counterpart. This review intends to provide information on non-GM sugarcane biology, genetics, breeding, agronomic management, processing, products and byproducts, as well as the current technologies used to develop GM sugarcane, with the aim of assisting regulators in the decision-making process regarding the commercial release of GM sugarcane cultivars

    A narrative review of alcohol consumption as a risk factor for global burden of disease

    Get PDF

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    Get PDF
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  ×  6  ×  6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between data and simulation

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation
    • 

    corecore